Matriks Balikan (Invers)/Lanjutan

Contoh 3: Matriks

A = {\displaystyle {\begin{bmatrix}3&1\\5&2\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}3&1\\5&2\\\end{bmatrix}}}

Tentukan Nilai dari A−1

Jawab: {\displaystyle A^{-1}={\frac {1}{(3)(2)-(5)(1)}}{\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}={\frac {1}{6-5}}{\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}={\frac {1}{1}}{\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}={\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}}{\displaystyle A^{-1}={\frac {1}{(3)(2)-(5)(1)}}{\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}={\frac {1}{6-5}}{\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}={\frac {1}{1}}{\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}={\begin{bmatrix}2&-1\\-5&3\\\end{bmatrix}}}

Contoh 4: Matriks

A = {\displaystyle {\begin{bmatrix}1&2\\1&3\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}1&2\\1&3\\\end{bmatrix}}}, B = {\displaystyle {\begin{bmatrix}3&2\\2&2\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}3&2\\2&2\\\end{bmatrix}}}, AB = {\displaystyle {\begin{bmatrix}7&6\\9&8\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}7&6\\9&8\\\end{bmatrix}}}

Dengan menggunakan rumus, maka didapatkan

{\displaystyle A^{-1}={\begin{bmatrix}3&-2\\-1&1\\\end{bmatrix}}}{\displaystyle A^{-1}={\begin{bmatrix}3&-2\\-1&1\\\end{bmatrix}}}{\displaystyle B^{-1}={\begin{bmatrix}1&-1\\-1&{\frac {3}{2}}\\\end{bmatrix}}}{\displaystyle B^{-1}={\begin{bmatrix}1&-1\\-1&{\frac {3}{2}}\\\end{bmatrix}}}{\displaystyle (AB)^{-1}={\begin{bmatrix}4&-3\\-{\frac {9}{2}}&7\\\end{bmatrix}}}{\displaystyle (AB)^{-1}={\begin{bmatrix}4&-3\\-{\frac {9}{2}}&7\\\end{bmatrix}}}

Maka

{\displaystyle B^{-1}A^{-1}={\begin{bmatrix}1&-1\\-1&{\frac {3}{2}}\\\end{bmatrix}}}{\displaystyle B^{-1}A^{-1}={\begin{bmatrix}1&-1\\-1&{\frac {3}{2}}\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}3&-2\\-1&1\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}3&-2\\-1&1\\\end{bmatrix}}} = {\displaystyle {\begin{bmatrix}4&-3\\-{\frac {9}{2}}&7\\\end{bmatrix}}}{\displaystyle {\begin{bmatrix}4&-3\\-{\frac {9}{2}}&7\\\end{bmatrix}}}

Ini membuktikan bahwa {\displaystyle (AB)^{-1}=B^{-1}A^{-1}}{\displaystyle (AB)^{-1}=B^{-1}A^{-1}}



Komentar

Login untuk melihat komentar!